
Excelgraduate
Copyright 2023 excelgraduate.com | All Rights Reserved.
Web View: https://excelgraduate.com/advanced-useful-vba-codes-for-excel/

40 Advanced VBA Codes for Excel
Excel is one of the most widely used programs in the world, and it's no secret that its VBA
programming language is a powerful tool for automating tasks and increasing productivity.
With advanced VBA codes, you can take your Excel skills to the next level and streamline your
workflows even further. That's why I've compiled a list of 40 advanced useful VBA codes for
Excel.

So without further ado, let's dive into the world of advanced VBA codes for Excel and see what's
in store.

Table of Contents

File Export.. 2
Export Each Worksheet in a Workbook as Separate Excel Files.. 2
Export All Worksheets in a Workbook as Separate PDF Files.. 2
Export Worksheet as a PDF File Using Current Date & Time in the Filename with a Prompt.3
Export Charts from Excel to PowerPoint... 5
Select and Export Range as PDF in Excel.. 6

Range Manipulation...7
Select a Range to Apply Alternate Row Colors in Excel..7
Remove Blank Rows in the Active Worksheet in Excel... 7
Unhide All Rows and Columns in the Active Worksheet... 8
Unmerge All Merged Cells in Excel... 8

Sheet Manipulation..8
Delete Multiple Sheets Without Any Warning Prompt in Excel.. 8
Unhide All Worksheets in Your Excel Workbook... 9
Sort Worksheets Alphabetically in Excel... 10

https://excelgraduate.com/advanced-useful-vba-codes-for-excel/
https://excelgraduate.com/vba-in-excel/
https://excelgraduate.com/vba-in-excel/

Check Whether a Specific Sheet Exists in a Workbook...11
Workbook Manipulation.. 11

Combine Multiple Excel Workbooks into a Single Workbook...11
Delete All Blank Worksheets from an Excel Workbook... 12
Refresh All Pivot Tables in the Active Workbook... 13
Activate R1C1 Reference Style in Excel..13
Activate A1 Reference Style in Excel.. 13

Data Manipulation..14
Create a List of All Sheets [Table of Contents] in Excel...14
Transfer Data from Excel to Powerpoint.. 15
Remove All Extra Spaces from a Selected Range in Excel...16
Search Value on Multiple Sheets in Excel... 17

Formatting..18
AutoFit All Non-Blank Columns in the Active Worksheet in Excel... 18
AutoFit All Non-Blank Rows in the Active Worksheet in Excel.. 19
Highlight All the Cells Having Formulas in Excel... 19
Change Letter Case in Excel... 19
Highlight Cells with Wrongly Spelled Words in Excel.. 20
Change Font Size of All Sheets of an Entire Workbook.. 21
Remove All Text Wraps in the Active Worksheet...22

Print File... 22
Select and Print Multiple Ranges On Separate Pages.. 22
Print Selected Sheets Using Sheet Numbers.. 23
Print Selected Sheets By Mentioning the Sheet Names..23
Print the Active Worksheet with Comments...24
Print All the Hidden As Well As Visible Worksheets.. 24

Miscellaneous.. 25
Select All Non-Blanks Cells in the Active Worksheet.. 25
Remove Page Breaks from the Active Worksheet...25
Count Total Number of Non-Blank Rows in a Selected Range in Excel................................ 25
Count Total Number of Non-Blank Columns in the Active WorkSheet in Excel.....................26
Read Contents of a Selected Range Using Text To Speech... 27
Search on Google from Your Excel Worksheet... 27

Conclusion... 28

1

File Export

Export Each Worksheet in a Workbook as Separate Excel Files
This code will allow you to export all the sheets in your workbook as separate Excel files. You
will get a prompt window to choose a location to save all the Excel files.

Sub CopySheetsToNewWorkbooks()

Dim sheetToCopy As Worksheet

Dim saveFolder As String

' Prompt the user to choose a directory to save the new sheets in

With Application.FileDialog(msoFileDialogFolderPicker)

.Title = "Select a folder to save the sheets in"

.Show

If .SelectedItems.Count > 0 Then

saveFolder = .SelectedItems(1) & "\"

Else

' User canceled the dialog, exit the subroutine

Exit Sub

End If

End With

Application.ScreenUpdating = False

For Each sheetToCopy In ActiveWorkbook.Sheets

sheetToCopy.Copy

ActiveWorkbook.SaveAs Filename:=saveFolder & sheetToCopy.Name &

".xlsx"

ActiveWorkbook.Close saveChanges:=False

Next

Application.ScreenUpdating = True

End Sub

Export All Worksheets in a Workbook as Separate PDF Files
This code will allow you to export all the sheets in your workbook as separate pdf files. You will
get a prompt window to choose a location to save all the pdf files.

2

Sub CopySheetsToNewPDFs()

Dim sheetToCopy As Worksheet

Dim saveFolder As String

' Prompt the user to choose a directory to save the new PDFs in

With Application.FileDialog(msoFileDialogFolderPicker)

.Title = "Select a folder to save the PDFs in"

.Show

If .SelectedItems.Count > 0 Then

saveFolder = .SelectedItems(1) & "\"

Else

' User cancelled the dialog, exit the subroutine

Exit Sub

End If

End With

Application.ScreenUpdating = False

For Each sheetToCopy In ActiveWorkbook.Sheets

sheetToCopy.ExportAsFixedFormat Type:=xlTypePDF,

Filename:=saveFolder & sheetToCopy.Name & ".pdf"

Next

Application.ScreenUpdating = True

End Sub

Export Worksheet as a PDF File Using Current Date & Time in the
Filename with a Prompt
This code can export a worksheet as a pdf file. The file name will start with the sheet name
followed by the current date & time. You will get a prompt to choose a specific location to save
the pdf file. Also you will be allowed to edit the file name while saving it.

Sub SavePDFWithDateAndTime()

Dim ws As Worksheet

Dim wb As Workbook

Dim timeStr As String

Dim nameStr As String

Dim pathStr As String

3

Dim fileStr As String

Dim pathAndFileStr As String

Dim saveAsResult As Variant

On Error GoTo errorHandler

Set wb = activeWorkbook

Set ws = ActiveSheet

timeStr = Format(Now(), "mm.dd.yyyy_hh.mm_AM/PM")

pathStr = wb.Path

If pathStr = "" Then

pathStr = Application.DefaultFilePath

End If

pathStr = pathStr & ""

nameStr = Replace(ws.Name, " ", "")

nameStr = Replace(nameStr, ".", "_")

fileStr = nameStr & "_" & timeStr & ".pdf"

pathAndFileStr = pathStr & fileStr

saveAsResult = Application.GetSaveAsFilename _

(InitialFileName:=pathAndFileStr, _

FileFilter:="PDF Format (*.pdf), *.pdf", _

Title:="Choose a folder & name")

If saveAsResult <> "False" Then

ws.ExportAsFixedFormat _

Type:=xlTypePDF, _

fileName:=saveAsResult, _

Quality:=xlQualityStandard, _

IncludeDocProperties:=True, _

IgnorePrintAreas:=False, _

OpenAfterPublish:=False

MsgBox "Pdf successfully saved at:" _

& vbCrLf _

& saveAsResult

End If

exitHandler:

Exit Sub

errorHandler:

4

MsgBox "Failed to save the PDF file."

Resume exitHandler

End Sub

Export Charts from Excel to PowerPoint
This code exports a selected chart in Excel to a new PowerPoint slide. It first checks if a chart
is selected and displays a message if one isn't. If a chart is selected, it adds a slide with a title
only layout, copies the selected chart, and pastes it onto the PowerPoint slide.

Sub ExportChartToPowerPoint()

' Declare and initialize variables

Dim pptApp As Object ' PowerPoint application

Dim pptPres As Object ' PowerPoint presentation

Dim pptSlide As Object ' PowerPoint slide

Dim pptShape As Object ' PowerPoint shape

' Check if a chart is selected

If ActiveChart Is Nothing Then

MsgBox "Please select a chart to export.", vbExclamation, "No Chart

Selected"

Exit Sub

End If

' Create a PowerPoint application if one doesn't exist

If pptApp Is Nothing Then

Set pptApp = CreateObject("PowerPoint.Application")

End If

On Error GoTo 0 ' Disable error handling

Application.ScreenUpdating = False ' Disable screen updating

' Create a new PowerPoint presentation

Set pptPres = pptApp.Presentations.Add

' Add a slide with a title only layout

Set pptSlide = pptPres.Slides.Add(1, 11) '11 = ppLayoutTitleOnly

' Copy the selected chart and paste it onto the PowerPoint slide

5

https://www.microsoft.com/en-ww/microsoft-365/powerpoint

ActiveChart.ChartArea.Copy

pptSlide.Shapes.Paste

Set pptShape = pptSlide.Shapes(pptSlide.Shapes.Count)

' Position the chart on the slide

pptShape.Left = 200

pptShape.Top = 200

' Show the PowerPoint application

pptApp.Visible = True

pptApp.Activate

Application.CutCopyMode = False ' Clear the clipboard

' Enable screen updating

Application.ScreenUpdating = True

End Sub

Select and Export Range as PDF in Excel
This code allows you to select and insert a range and then export the range as a pdf file. You
will also get a prompt to manually choose a destination to save and rename the file.

Sub ExportRangeAsPDF()

' Allow user to select a range

Dim selectedRange As Range

Set selectedRange = Application.InputBox("Select a range", Type:=8)

' Define the filename and path for the exported PDF

Dim savePath As Variant

savePath = Application.GetSaveAsFilename(FileFilter:="PDF (*.pdf),

*.pdf")

' Export the range as a PDF file

If savePath <> False Then

selectedRange.ExportAsFixedFormat Type:=xlTypePDF,

Filename:=savePath, Quality:=xlQualityStandard, IncludeDocProperties:=True,

IgnorePrintAreas:=False

End If

6

End Sub

Range Manipulation

Select a Range to Apply Alternate Row Colors in Excel
This VBA code allows you to select a range and apply alternate row colors to that range.

Sub ApplyRowColors()

' Allow user to select a range

Dim selectedRange As Range

Set selectedRange = Application.InputBox("Select a range", Type:=8)

' Define the colors to alternate between

Dim color1 As Long

color1 = RGB(242, 242, 242) ' light gray

Dim color2 As Long

color2 = RGB(255, 255, 255) ' white

' Apply the colors to each row in the range

Dim numRows As Long

numRows = selectedRange.Rows.Count

Dim i As Long

For i = 1 To numRows

If i Mod 2 = 0 Then

selectedRange.Rows(i).Interior.Color = color1

Else

selectedRange.Rows(i).Interior.Color = color2

End If

Next i

End Sub

Remove Blank Rows in the Active Worksheet in Excel
This code can remove all the blank rows inside your data in Excel when you run it.

Sub RemoveBlankRows()

Dim rng As Range

7

Dim i As Long

'Set the range of cells to the used range of the active worksheet

Set rng = ActiveSheet.UsedRange

'Loop through each row in the range

For i = rng.Rows.Count To 1 Step -1

If WorksheetFunction.CountA(rng.Rows(i)) = 0 Then

'If the row is completely empty, delete it

rng.Rows(i).Delete

End If

Next i

End Sub

Unhide All Rows and Columns in the Active Worksheet
This code will let you unhide all the hidden rows and columns in one go.

Sub UnhideAllRowsColumns()

ActiveSheet.Cells.EntireRow.Hidden = False

ActiveSheet.Cells.EntireColumn.Hidden = False

End Sub

Unmerge All Merged Cells in Excel
This VBA code will unmerge all the merged cells in your active worksheet in Excel.

Sub UnmergeAllCells()

ActiveSheet.Cells.UnMerge

End Sub

Sheet Manipulation

Delete Multiple Sheets Without Any Warning Prompt in Excel
This subroutine deletes multiple sheets without any warning prompt with the given names. Just
run the code, insert sheet names to delete, separated by commas and see the magic.

8

Sub DeleteSheetsWithNames()

' Declare variables

Dim currentSheet As Worksheet

Dim sheetNamesToDelete As Variant

Dim i As Long

' Prompt the user to enter the sheet names to delete, separated by

commas

sheetNamesToDelete = Split(InputBox("Enter the sheet names to delete,

separated by commas"), ",")

' Disable alerts to avoid confirmation messages

Application.DisplayAlerts = False

' Loop through each worksheet in the workbook

For Each currentSheet In ThisWorkbook.Worksheets

' Check if the current sheet name is in the array of sheets to

delete

For i = LBound(sheetNamesToDelete) To UBound(sheetNamesToDelete)

If Trim(sheetNamesToDelete(i)) = currentSheet.Name Then

' Delete the sheet and exit the inner loop once a match is

found

currentSheet.Delete

Exit For

End If

Next i

Next currentSheet

' Enable alerts again

Application.DisplayAlerts = True

' Display a message to confirm the deletion

MsgBox "The sheets have been deleted successfully."

End Sub

Unhide All Worksheets in Your Excel Workbook
This code allows you to unhide all the worksheets at the same time.

9

Sub UnhideAllSheets()

Dim ws As Worksheet

For Each ws In ActiveWorkbook.Worksheets

ws.Visible = xlSheetVisible

Next ws

End Sub

Sort Worksheets Alphabetically in Excel
This VBA code sorts the worksheets in an Excel workbook alphabetically based on your input. It
asks you to choose whether you want to sort the worksheets in ascending order (A-Z),
descending order (Z-A), or exit the sorting process.

Sub AlphabeticallySortWorksheets()

Application.ScreenUpdating = False

Dim sheetCount As Integer, i As Integer, j As Integer

Dim sortOrder As VbMsgBoxResult

sortOrder = MsgBox("Click Yes to sort A-Z, No to sort Z-A, or Cancel to

exit.", vbYesNoCancel)

sheetCount = Sheets.Count

For i = 1 To sheetCount - 1

For j = i + 1 To sheetCount

If sortOrder = vbYes Then

If UCase(Sheets(j).Name) < UCase(Sheets(i).Name) Then

Sheets(j).Move before:=Sheets(i)

End If

ElseIf sortOrder = vbNo Then

If UCase(Sheets(j).Name) > UCase(Sheets(i).Name) Then

Sheets(j).Move before:=Sheets(i)

End If

ElseIf sortOrder = vbCancel Then

MsgBox "Sorting worksheets cancelled."

Exit Sub

End If

Next j

Next i

Application.ScreenUpdating = True

10

MsgBox "Worksheets have been sorted " & IIf(sortOrder = vbYes, "in

ascending order (A-Z).", "in descending order (Z-A).")

End Sub

Check Whether a Specific Sheet Exists in a Workbook
This VBA code helps you check whether a sheet with a specific name exists in your Excel
workbook or not. If it finds a match, it displays a message box telling you that the sheet exists
and exits the sub. If it doesn't find a match, it displays another message box informing you that
the sheet does not exist.

Sub CheckIfSheetExists()

Dim sheetName As String

Dim ws As Worksheet

sheetName = InputBox("Enter the name of the sheet you want to check.")

For Each ws In ThisWorkbook.Worksheets

If ws.Name = sheetName Then

MsgBox "The sheet " & sheetName & " exists in this workbook."

Exit Sub

End If

Next ws

MsgBox "The sheet " & sheetName & " does not exist in this workbook."

End Sub

Workbook Manipulation

Combine Multiple Excel Workbooks into a Single Workbook
The following sub routine combines multiple Excel workbooks into a single workbook. It prompts
the user to select multiple files using the File Dialog Box. It then opens each file, copies all
worksheets and pastes them into the destination workbook.

Sub CombineWorkbooks()

' Declare variables

Dim fileCount, g As Integer

11

Dim fileDialog As fileDialog

Dim destinationWorkbook, sourceWorkbook As Workbook

Dim sourceWorksheet As Worksheet

' Set the destination workbook as the active workbook

Set destinationWorkbook = Application.ActiveWorkbook

' Open the File Dialog Box to allow the user to select multiple files

Set fileDialog = Application.fileDialog(msoFileDialogFilePicker)

fileDialog.AllowMultiSelect = True

fileCount = fileDialog.Show

' Loop through each selected file

For g = 1 To fileDialog.SelectedItems.Count

' Open the file and set it as the source workbook

Workbooks.Open fileDialog.SelectedItems(g)

Set sourceWorkbook = ActiveWorkbook

' Loop through each worksheet in the source workbook and copy it to the

destination workbook

For Each sourceWorksheet In sourceWorkbook.Worksheets

sourceWorksheet.Copy

after:=destinationWorkbook.Sheets(destinationWorkbook.Worksheets.Count)

Next sourceWorksheet

' Close the source workbook

sourceWorkbook.Close

Next g

End Sub

Delete All Blank Worksheets from an Excel Workbook
This VBA code loops through all the worksheets in the active workbook and checks if each
worksheet is blank. If a worksheet is blank, it is deleted without any confirmation message.

Sub DeleteBlankWorksheets()

Dim ws As Worksheet

Application.DisplayAlerts = False 'Disable alerts

12

For Each ws In ThisWorkbook.Worksheets

If Application.WorksheetFunction.CountA(ws.Cells) = 0 Then

ws.Delete

End If

Next ws

Application.DisplayAlerts = True 'Enable alerts

End Sub

Refresh All Pivot Tables in the Active Workbook
This code loops through all pivot tables in the active workbook using a For Each loop and then
refreshes each pivot table using the RefreshTable method.

Sub RefreshAllPivotTables()

Dim pt As PivotTable

For Each pt In ActiveWorkbook.PivotTables

pt.RefreshTable

Next pt

End Sub

Activate R1C1 Reference Style in Excel
This code sets the reference style of Excel from A1 reference style to R1C1 reference style.

Sub ActivateR1C1ReferenceStyle()

Application.ReferenceStyle = xlR1C1

End Sub

Activate A1 Reference Style in Excel
This code sets the reference style of Excel from R1C1 reference style to A1 reference style.

Sub ActivateA1ReferenceStyle()

Application.ReferenceStyle = xlA1

End Sub

13

Data Manipulation

Create a List of All Sheets [Table of Contents] in Excel
This VBA code creates a sheet named “Table of Contents” that lists all the other worksheets in
the workbook, excluding the “Table of Contents” sheet itself. Then the code loops through all the
worksheets in the workbook, excluding the “Table of Contents” sheet, and adds their names by
inserting a hyperlink to each sheet.

Sub CreateTableOfContents()

Dim ws As Worksheet

Dim tocSheet As Worksheet

Dim lastRow As Long

Dim sheetName As String

Dim i As Long

' Create a new sheet for the table of contents

Set tocSheet = ThisWorkbook.Sheets.Add(After:= _

ThisWorkbook.Sheets(ThisWorkbook.Sheets.Count))

tocSheet.Name = "Table of Contents"

' Set the column headings and format the table of contents

With tocSheet

.Range("A1").Value = "List of All Sheets"

.Range("A1").Font.Bold = True

.Range("A1").Font.Size = 12

.Range("A1").HorizontalAlignment = xlCenter

.Columns("A").AutoFit

.Range("A2:A" & .Rows.Count).Font.Size = 12

End With

' Loop through all worksheets and add their names to the table of

contents

i = 2 ' Start adding sheet names in row 2

For Each ws In ThisWorkbook.Worksheets

If ws.Name <> tocSheet.Name Then ' Exclude the table of contents

sheet

sheetName = ws.Name

' Add a hyperlink to the sheet in the table of contents

tocSheet.Hyperlinks.Add Anchor:=tocSheet.Range("A" & i),

Address:="", _

14

SubAddress:="'" & sheetName & "'!A1",

TextToDisplay:=sheetName

i = i + 1 ' Move to the next row

End If

Next ws

' Move the table of contents sheet to the first position in the

workbook

tocSheet.Move Before:=ThisWorkbook.Sheets(1)

End Sub

Transfer Data from Excel to Powerpoint
This VBA code asks you to select a range of cells in your Excel sheet. Then it opens the
PowerPoint application, adds a new presentation and slide to it, and pastes the selected range
as a table onto the new PowerPoint slide.

Sub TransferDataToPowerPoint()

' Declare variables

Dim xlRange As Range

Dim pptApp As Object

Dim pptPres As Object

Dim pptSlide As Object

Dim pptShape As Object

' Prompt user to select a range in Excel

On Error Resume Next

Set xlRange = Application.InputBox(prompt:="Select a range to transfer

to PowerPoint.", Type:=8)

On Error GoTo 0

' Check if a range was selected

If xlRange Is Nothing Then

MsgBox "No range was selected. Please try again.", vbCritical

Exit Sub

End If

' Create new PowerPoint presentation and add a new slide

Set pptApp = CreateObject("PowerPoint.Application")

15

pptApp.Visible = True

Set pptPres = pptApp.Presentations.Add

Set pptSlide = pptPres.Slides.Add(1, 12)

' Copy range to clipboard

xlRange.Copy

' Paste range onto PowerPoint slide as a table

Set pptShape = pptSlide.Shapes.PasteSpecial(DataType:=2)

pptShape.Left = 50

pptShape.Top = 100

' Cleanup

Set pptShape = Nothing

Set pptSlide = Nothing

Set pptPres = Nothing

Set pptApp = Nothing

Set xlRange = Nothing

End Sub

Remove All Extra Spaces from a Selected Range in Excel
This code allows you to manually select a range of cells in an Excel workbook using a prompt.
Then it removes any leading and trailing spaces from the cell values, as well as any extra
spaces between words.

Sub RemoveSpaces()

Dim rng As Range

Dim cell As Range

'Prompt the user to select the range of cells to remove spaces from

On Error Resume Next

Set rng = Application.InputBox("Please select the range of cells to

remove spaces from:", "Select Range", Type:=8)

On Error GoTo 0

'Check if the user cancelled the selection

If rng Is Nothing Then

MsgBox "No range was selected.", vbInformation

Exit Sub

16

End If

'Loop through each cell in the range

For Each cell In rng

'Remove leading and trailing spaces from the cell value

cell.Value = Trim(cell.Value)

'Remove any extra spaces between words

Do While InStr(cell.Value, " ") > 0

cell.Value = Replace(cell.Value, " ", " ")

Loop

Next cell

End Sub

Search Value on Multiple Sheets in Excel
This code allows you to search for a specific value on all the worksheets in the current
workbook. It will prompt you to enter the search term and then loops through each worksheet in
the workbook to find the first occurrence of the value. If it finds the value, it will display a
message box showing the worksheet name and cell address where the value is found. If it does
not find the value on any sheet, it displays a message indicating that the value was not found.

Sub SearchValueOnSheets()

' Declare variables

Dim ws As Worksheet

Dim rngSearch As Range

Dim strSearch As String

Dim foundCell As Range

' Prompt user to enter a search term

strSearch = InputBox("Enter the value you want to search for:")

' Loop through all worksheets in the workbook

For Each ws In ThisWorkbook.Worksheets

' Search for the value on the sheet

Set rngSearch = ws.Cells.Find(What:=strSearch, LookIn:=xlValues,

LookAt:=xlWhole)

17

' Check if the value was found

If Not rngSearch Is Nothing Then

Set foundCell = rngSearch

Exit For

End If

Next ws

' Check if the value was found on any sheet

If Not foundCell Is Nothing Then

MsgBox "The value was found on sheet " & foundCell.Worksheet.Name &

" in cell " & foundCell.Address & ".", vbInformation

Else

MsgBox "The value was not found on any sheet.", vbInformation

End If

End Sub

Formatting

AutoFit All Non-Blank Columns in the Active Worksheet in Excel
This VBA code will autofit all non-blank columns in the active worksheet of an Excel workbook.

Sub AutoFitNonBlankColumns()

Dim lastCol As Long

Dim i As Long

' Get the last column with data in the current worksheet

lastCol = Cells.Find("*", SearchOrder:=xlByColumns,

SearchDirection:=xlPrevious).Column

' Loop through each column and autofit if there is non-blank data

For i = 1 To lastCol

If WorksheetFunction.CountA(Columns(i)) > 1 Then

Columns(i).AutoFit

End If

Next i

End Sub

18

AutoFit All Non-Blank Rows in the Active Worksheet in Excel
This VBA code will autofit all non-blank rows in the active worksheet of an Excel workbook.

Sub AutoFitNonBlankRows()

Dim lastRow As Long

Dim i As Long

lastRow = ActiveSheet.Cells(Rows.Count, 1).End(xlUp).Row

For i = 1 To lastRow

If WorksheetFunction.CountA(Rows(i)) > 0 Then

Rows(i).EntireRow.AutoFit

End If

Next i

End Sub

Highlight All the Cells Having Formulas in Excel
This VBA code loops through all the cells in the used range of the active sheet and checks if
each cell contains a formula. If a cell contains a formula (i.e., if the first character of the cell is
"="), then it changes the cell color to yellow.

Sub HighlightFormulaCells()

Dim cell As Range

For Each cell In ActiveSheet.UsedRange

If Left(cell.Formula, 1) = "=" Then

cell.Interior.Color = RGB(255, 255, 0) 'Set highlight color to

yellow

End If

Next cell

End Sub

Change Letter Case in Excel
This subroutine changes the letter case of the selected cells based on user input. To change the
case, you have to select the cells first and then run the code. It will work like magic.

Sub UpdateSelectedCellsCase()

19

' Prompt the user to input a letter to indicate the desired case

Dim caseType As String

caseType = InputBox("Enter 'a' for lowercase, 'b' for UPPERCASE, or 'c' for

Proper Case." _

& vbCrLf & vbCrLf & "Note: Only the alphabetic characters will be

affected.")

' Apply the selected case to each cell in the selection

Select Case caseType

Case "a", "A"

For Each selectedCell In Application.Selection

selectedCell.Value = LCase(selectedCell.Value)

Next selectedCell

Case "b", "B"

For Each selectedCell In Application.Selection

selectedCell.Value = UCase(selectedCell.Value)

Next selectedCell

Case "c", "C"

For Each selectedCell In Application.Selection

selectedCell.Value =

WorksheetFunction.Proper(selectedCell.Value)

Next selectedCell

Case Else

' Display an error message and exit the subroutine

MsgBox "Invalid input. Please enter 'a', 'b', or 'c'.",

vbExclamation, "Error"

Exit Sub

End Select

' Display a completion message

MsgBox "Case updated successfully!", vbInformation, "Complete"

End Sub

Highlight Cells with Wrongly Spelled Words in Excel
This code highlights the cells that have misspelled words in the active worksheet.

20

Sub HighlightMisspelledCells()

'This subroutine highlights the cells that have misspelled words.

Dim cell As Range

For Each cell In ActiveSheet.UsedRange

' Check if the cell text has any misspelled words.

If Not Application.CheckSpelling(word:=cell.Text) Then

' Highlight the cell with red color.

cell.Interior.Color = vbRed

End If

Next cell

' Inform the user that the highlighting process has completed.

MsgBox "Misspelled cells have been highlighted.", vbInformation,

"Highlight Misspelled Cells"

End Sub

Change Font Size of All Sheets of an Entire Workbook
This code prompts you to enter a font size, loops through all worksheets in the workbook. Then
it changes the font size of all cells in each sheet to the entered font size. If you cancel or enter
an invalid input (e.g. a negative number), the macro exits without making any changes.

Sub ChangeFontSize()

Dim ws As Worksheet

Dim fontSize As Integer

'Prompt user for font size

fontSize = InputBox("Enter font size:", "Font Size")

'Exit if user cancels or enters invalid input

If fontSize <= 0 Then Exit Sub

'Loop through all worksheets in the workbook

For Each ws In ThisWorkbook.Worksheets

'Change font size of all cells in the sheet

ws.Cells.Font.Size = fontSize

Next ws

21

End Sub

Remove All Text Wraps in the Active Worksheet
This code removes all the text wraps in your active worksheet in Excel.

Sub RemoveTextWrap()

Cells.WrapText = False

End Sub

Print File

Select and Print Multiple Ranges On Separate Pages
This piece of code allows you to specify the number of ranges first and then input those ranges
by selecting cells using a prompt window. After that, it will tell you to save the ranges as
separate pdf files to start printing each range on separate pages.

Sub PrintSelectedRanges()

'Declare variables

Dim numRanges As Integer

Dim currentRange As Integer

Dim rangeAddress As Object

Dim currentSheet As Worksheet

Dim printArea As Object

Dim Preview As Boolean

'Get the number of ranges to print from the user

numRanges = InputBox("Enter the number of ranges to print:")

'Loop through each range and prompt the user to select and insert it

For currentRange = 1 To numRanges

'Prompt the user to select and insert the current range

Set printArea = Application.InputBox("Select range " & currentRange &

":", Type:=8)

'Add the selected range to the overall print area

If currentRange = 1 Then

Set rangeAddress = printArea

22

Else

Set rangeAddress = Union(rangeAddress, printArea)

End If

Next currentRange

'Set the print area for the active sheet and print it

With ActiveSheet.PageSetup

.printArea = rangeAddress.Address

Preview = False

ActiveWindow.SelectedSheets.PrintOut Preview:=Preview

End With

End Sub

Print Selected Sheets Using Sheet Numbers
This code will allow you to print a number of selected sheets. After running the code, you will be
given the option to insert the starting and ending sheet numbers on your workbook. Based on
your given sheet numbers, it will save and print those sheets one by one. Keep in mind that, this
code only works on consecutive sheets.

Sub PrintSelectedSheets()

Dim sheetStart As Integer

Dim sheetEnd As Integer

sheetStart = InputBox("Enter the starting sheet number:")

sheetEnd = InputBox("Enter the ending sheet number:")

For i = sheetStart To sheetEnd

Worksheets(i).PrintOut

Next i

End Sub

Print Selected Sheets By Mentioning the Sheet Names
By using this code, you can print a number of selected sheets by mentioning the sheet names
on the code.

Sub PrintSheetsByName()

23

Worksheets("January").PrintOut

Worksheets("February").PrintOut

Worksheets("May").PrintOut

Worksheets("August").PrintOut

End Sub

Print the Active Worksheet with Comments
This code will allow you to print out your active worksheet with all the comments in it.

Sub PrintSheetsWithComments()

'Display comments with comment indicators

Application.DisplayCommentIndicator = xlCommentAndIndicator

'Set up printing options to include comments

With ActiveSheet

.PageSetup.PrintComments = xlPrintInPlace

.PrintOut 'Print the active sheet with comments

End With

End Sub

Print All the Hidden As Well As Visible Worksheets
This code can print out all the hidden as well as visible worksheets on your workbook. It will
allow you to save all the sheets one by one first and then print them out respectively.

Sub PrintAllHiddenAndVisibleSheets()

'Declare variables

Dim currentVisible As Long

Dim workingSheet As Worksheet

'Loop through each worksheet in the active workbook

For Each workingSheet In ActiveWorkbook.Worksheets

With workingSheet

'Save the current visibility state of the worksheet

currentVisible = .Visible

'Set the worksheet to be visible

.Visible = xlSheetVisible

24

'Print the worksheet

.PrintOut

'Restore the previous visibility state of the worksheet

.Visible = currentVisible

End With

Next workingSheet

End Sub

Miscellaneous

Select All Non-Blanks Cells in the Active Worksheet
This code selects all the cells with data in the active worksheet.

Sub SelectCellsWithData()

Dim ws As Worksheet

Set ws = ActiveSheet

Dim lastRow As Long

Dim lastColumn As Long

lastRow = ws.Cells.Find("*", SearchOrder:=xlByRows,

SearchDirection:=xlPrevious).Row

lastColumn = ws.Cells.Find("*", SearchOrder:=xlByColumns,

SearchDirection:=xlPrevious).Column

Dim dataRange As Range

Set dataRange = ws.Range(ws.Cells(1, 1), ws.Cells(lastRow, lastColumn))

dataRange.SpecialCells(xlCellTypeConstants).Select

End Sub

Remove Page Breaks from the Active Worksheet
This code lets you remove page breaks from the current worksheet in just one click.

Sub DisablePageBreaks()

ActiveSheet.DisplayPageBreaks = False

End Sub

25

Count Total Number of Non-Blank Rows in a Selected Range in Excel
This subroutine counts the number of non-blank rows in the selected range. Just select a range
and then run the code. It will show the count of all non-blank rows in a popped-up dialog box.

Sub CountNonBlankRows()

' Declare and initialize variables

Dim rowCount As Integer

rowCount = 0

' Loop through each row in the selection

For i = 1 To Selection.Rows.Count

' Check if the first cell in the row is not blank

If Selection.Cells(i, 1) <> "" Then

rowCount = rowCount + 1 ' Increment the row count

End If

Next i

' Display the row count in a message box

MsgBox "Number of non-blank rows: " & rowCount

End Sub

Count Total Number of Non-Blank Columns in the Active WorkSheet
in Excel
This code can count the total number of non-blank columns in the active worksheet in Excel.
Just run the code and you will get count figure in a popped-up dialog box.

Sub CountNonBlankColumns()

' Declare and initialize variables

Dim colCount As Integer

colCount = 0

' Get the range of cells in the active worksheet

Dim dataRange As Range

Set dataRange = ActiveSheet.UsedRange

26

' Loop through each column in the range

Dim col As Range

For Each col In dataRange.Columns

' Check if the column has any non-blank cells

If Application.WorksheetFunction.CountA(col) > 0 Then

colCount = colCount + 1 ' Increment the column count

End If

Next col

' Display the column count in a message box

MsgBox "Number of non-blank columns: " & colCount

End Sub

Read Contents of a Selected Range Using Text To Speech
This code will prompt you to select a range. Next, it will read the contents of each cell using text
to speech.

Sub SpeakSelectedRange()

Dim myRange As Range

Set myRange = Application.InputBox(prompt:="Please select a range to

speak", Type:=8)

For Each cell In myRange

SpeakText (cell.Value)

Next cell

End Sub

Sub SpeakText(TextToSpeak As String)

Dim objVoice As Object

Set objVoice = CreateObject("SAPI.SpVoice")

objVoice.Speak TextToSpeak

End Sub

Search on Google from Your Excel Worksheet
This code will prompt you to enter a search query in an input box. Upon entering the query and
clicking OK, the code replaces any spaces in the query with a + sign, creates a Google search

27

URL by appending the q parameter (which represents the search query) to the base URL
https://www.google.com/search?q=. Finally, it opens the constructed URL in your default web
browser.

Sub GoogleSearch()

Dim query As String

Dim url As String

query = InputBox("Enter your Google search query:")

If query <> "" Then

query = Replace(query, " ", "+")

url = "https://www.google.com/search?q=" & query

ActiveWorkbook.FollowHyperlink url

End If

End Sub

Conclusion
I hope that this collection of 40 advanced useful VBA codes for Excel has been helpful to you
and that you're able to apply them in your daily work. Remember, these codes are just a starting
point, and there's always more to learn. Keep exploring the world of VBA and see how you can
further customize Excel to suit your needs.

Excelgraduate
Copyright 2023 excelgraduate.com | All Rights Reserved.

Web View: https://excelgraduate.com/advanced-useful-vba-codes-for-excel/

28

https://www.google.com/search?q=
https://excelgraduate.com/advanced-useful-vba-codes-for-excel/

